出国留学网专题频道全称量词与存在量词教案栏目,提供与全称量词与存在量词教案相关的所有资讯,希望我们所做的能让您感到满意!
12-09
导学目标:
1.了解逻辑联结词“或、且、非”的含义.
2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.
自主梳理
1.逻辑联结词
命题中的或,且,非叫做逻辑联结词.“p且q”记作p∧q,“p或q”记作p∨q,“非p”记作綈p.
2.命题p∧q,p∨q,綈p的真假判断
p q p∧q p∨q 綈p
真 真 真 真 假
真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
3.全称量词与存在量词
(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x∈M,p(x),它的否定∃x∈M,綈p(x).
(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题,可用符号简记为∃x∈M,p(x),它的否定∀x∈M,綈p(x).
自我检测
1.命题“∃x∈R,x2-2x+1<0”的否定是( )
A.∃x∈R,x2-2x+1≥0 B.∃x∈R,x2-2x+1>0
C.∀x∈R,x2-2x+1≥0 D.∀x∈R,x2-2x+1<0
答案 C
解析 因要否定的命题是特称命题,而特称命题的否定为全称命题.对x2-2x+1<0的否定为x2-2x+1≥0,故选C.
2.若命题p:x∈A∩B,则綈p是( )
A.x∈A且x B B.x A或x B
C.x A且x B D.x∈A∪B
答案 B
解析 ∵“x∈A∩B”⇔“x∈A且x∈B”,
∴綈p:x A或x B.
3.(2011•大连调研)若p、q是两个简单命题,且“p∨q”的否定是真命题,则必有( )
A.p真q真 B.p假q假
C.p真q假 D.p假q真
答案 B
解析 ∵“p∨q”的否定是真命题,
∴“p∨q”是假命题,∴p,q都假.
4.(2010•湖南)下列命题中的假命题是( )
A.∀x∈R,2x-1>0
B...
全称量词与存在量词教案推荐访问