出国留学网

目录

韩国延世大学基本概况

字典 |

2017-09-26 10:36

|

【 liuxue86.com - 教育体系 】

学校名称: 韩国延世大学 연세대학교

所在位置:韩国,首尔市西大门区延世路50号

学费:42000 人民币

录取率:0.501

学校中文网址:https://hanguo.liuxue86.com/school/7583/

  三、教研优势

  1.杰出研究成果展示

  Location Matters: Local gene expression in neural circuits explained

  College of Medicine Professor Hosung Jung and his team have uncovered the function of local mRNA translation in the formation and maintenance of neural circuits. Neurons make long-distance connections via their axons, which need a number of different proteins. The problem is that DNA, the blueprint to make proteins, resides in the neuronal cell body, which is often remote from the axon terminal. How proteins needed at the axon terminal are supplied in a timely manner has remained a puzzle. One idea, which was confirmed in this research, was that the neuron transcribes messenger RNAs (mRNAs) from its DNA in the cell body, transport them in a translationally repressed form to the axon terminal, and synthetize specific proteins when and where they are needed by local mRNA translation.To test this hypothesis, they developed a new technique called axon-TRAP (translating ribosome affinity purification), which allows isolation of mRNAs being translated into proteins at the axon terminal in mouse in vivo. Using this technique, they discovered that specific mRNAs are locally translated into proteins necessary for making (or pruning) connections (or synapses) as the neural circuity is being built. An unexpected finding was that axonal local mRNA translation continues in the mature nervous system, where it is used to make proteins necessary for axon survival. The research could have important applications for the understanding of neurodegenerative disorders, which often result from failure to maintain axonal integrity. According to Professor Jung: “Although a strong genetic link has been found between the mutations in the RNA-binding proteins (RBPs) and neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) in human genetics, mechanistic details to explain this link was lacking. Because RBPs regulate mRNA splicing, transport and translation, this research enables us to view the cause of neurodegenerative diseases from a new perspective: dysfunctional RBPs prevent local translation of axon survival proteins.”Joining Professor Jung were two of his graduate students, Jane Jung and Jiyeon Ohk, and Professor Christine Holt’s research team of University of Cambridge. Their findings were published June 30 in Cell under the title “Dynamic Axonal Translation in Developing and Mature Visual Circuits.”

  研究成果一:位置问题,局部基因以神经回路的方式表达出来

  医学院教授郝荣荣博士及其团队发现了神经回路形成和维持中局部mRNA译码的功能。神经元通过其轴突进行长距离连接,需要许多不同的蛋白质。问题是,DNA是制造蛋白质的蓝图,它驻留在通常远离轴突末端的神经元细胞体内。如何及时提供轴突末端蛋白质所需的蛋白质仍然是一个难题。在这项研究中证实的一个想法是,神经元从细胞体中的DNA转录信使RNA(mRNA),将它们以译码抑制形式转运到轴突末端,并且在需要时和在何处合成特异性蛋白质通过局部mRNA译码。为了测试这个假设,他们开发了一种称为轴突-TRAP(译码核糖体亲和纯化)的新技术,其允许分离在体内小鼠轴突末端转化成蛋白质的mRNA。使用这种技术,他们发现特定的mRNA被局部译码成正在构建(或修剪)连接(或突触)所必需的蛋白质。意想不到的发现是在成熟神经系统中继续轴突局部mRNA译码,其中它用于制备轴突存活所必需的蛋白质。该研究可能有重要的应用,以了解神经退行性疾病,这往往是由于维持轴突完整性的失败。据Jung教授介绍:“虽然人类遗传学中RNA结合蛋白(RBPs)和神经变性疾病如肌萎缩性侧索硬化(ALS)的突变之间已经发现了强大的遗传连锁,但缺乏解释这一联系的机制细节。因为RBP调节mRNA剪接,转运和译码,这项研究使我们从一个新的角度来看待神经退行性疾病的原因:功能障碍的RBPs阻止轴突存活蛋白的局部译码。加入Jung教授的两位研究生Jane Jung和Jiyeon Ohk,以及Christine Holt教授的剑桥大学研究团队

  Developing and Mature Visual Circuits”。

  Currently, there are fears that North Korea could soon test a hydrogen bomb. Amidst these concerns, Yonsei Earth System Sciences Professor Hong Tae-Kyung and his team are studying how North Korea’s nuclear tests could affect seismic activities at Mount Baekdu. This is the first study to show that seismic waves following a nuclear test could possibly cause an earthquake and volcanic eruption at the mountain on the North Korean-Chinese border.Professor Hong and his team examined the dynamic stress changes of the magma chamber of Mt. Baekdu that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on the seismic waveforms of North Korea’s first three nuclear tests; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.Their calculations show that with a magnitude of 7.0, the blast would cause seismic tremors and changes in seismic earth pressure on the surface of Mount Baekdu and inside its magma chamber. This is the first study to show that North Korea’s nuclear tests are capable of causing significant volcanic activity at Mount Baekdu. The results were published on February 17 in the online edition of Scientific Reports, a sister journal of Nature.

  研究成果二:朝鲜核试验可能引发白头山火山爆发。

  目前,有人担心朝鲜可能很快就会测试氢弹。在这些担忧之中,延世大学地球系统科学院教授洪泰炯及其团队正在研究朝鲜的核试验如何影响白百山的地震活动。这是第一个研究表明,核试验后的地震波可能导致北韩和中国边界山区发生地震和火山爆发。洪教授及其团队研究了山岩浆室的动态压力变化。可以通过假想的朝鲜核爆炸诱发的白皮书。基于北朝鲜首个三次核试验的地震波形,利用经验Green函数法计算了朝鲜试验地点假想地下核爆炸的地震波形。这种技术对于具有受限制的速度结构的区域是有效的。根据经验强运动衰减曲线估计火山周围的地面高峰运动。假设的M7.0北韩地下核爆炸可能会在水平方向产生0.1684 m / s 2的峰值地面加速度,0.0917 m / s 2在火山周围的垂直方向上,在火山表面引起了67 kPa的峰值动态应力变化,球形岩浆室引起了〜120 kPa。北韩地下核爆炸的爆震数值为5.0-7.6,可能会导致岩浆室超压几十到几百千帕斯卡。他们的计算表明,在7.0级时, 爆炸将造成地震震颤和Baekdu山表面及其岩浆室内的地球地球压力变化。这是第一个研究表明,朝鲜的核试验能够在白百山开展重大的火山活动。研究结果于2月17日在“Nature”杂志在线版发表。

  Identification and Characterization of Small Molecules that Suppresses Growth of Cancers via Degrading both b-catenin and Ras

  A research team led by Professors Kang Yell Choi in the Yonsei’s Department of Biotechnology has identified small molecules that inhibit growth of colorectal cancer (CRC) cells via degrading both b-catenin and Ras. The small molecules inhibiting the Wnt/b-catenin pathway were selected by screening of several small-molecule libraries. Among the 40 compounds initially identified by their inhibitory effects on the Wnt/b-catenin pathway reporter activity, KY1220 was selected as a compound that efficiently degrades both b-catenin and Ras without showing cytotoxicity. KY1220 effectively inhibited transformation of CRC cells with activated Wnt/b-catenin and Ras/ERK pathways by adenomatos polyposis coli (APC) and K-Ras mutations. By collaboration with Professor Gyoonhee Han from the Department of Biotechnology and Pharmacology, several hundreds of derivatives were obtained, and KYA1797K, a functionally improved compound retaining druggablity, was obtained.KYA1797K effectively suppresses the growth of CRC cells with activated Wnt/β-catenin and Ras/ERK pathways. The RGS domain of axin was identified as a target for KYA1797K and molecular structure of RGS-axin-KYA1797K was determined by collaboration with Professor Weontae Lee in the Department of Biochemistry.They further characterized that KYA1797K activates GSK3β by modulation of the b-catenin destruction complex. The activated GSK3β induces phosphorylation of both b-catenin and Ras, which is required for their polyubiquitin-dependent proteasomal degradation, via recruitment of theb-TrCP E3 linker protein. KYA1797K effectively suppressed growth of CRC in the xenograft mice transplanted with the CRC cells harboring both APC and K-Ras mutations. The effectiveness of KYA1797K was further shown by using the genetically engineered Apcmin/+/KrasG12DLA2 mice harboring both APC and K-Ras mutations.Their findings were published June 14, 2016 in the online edition of Nature Chemical Biology (1st author; Pu-Hyeon Cha). The title of the article is “Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation.” This study suggests that destabilization of both β-catenin and Ras via targeting axin is a potential therapeutic strategy for treatment of CRC and other types of cancers activated Wnt/β-catenin and Ras pathways.

  研究成果三:通过降解b-连环蛋白和Ras抑制癌症生长的小分子的鉴定和表征

  一个研究小组教授领导小号在生物技术的延世大学署康叫喊彩已确定了通过降低都可以抑制结肠直肠癌(CRC)细胞的生长的小分子b 联蛋白和Ras。通过筛选几个小分子文库来选择抑制Wnt / b-连接蛋白通路的小分子。中最初由于Wnt /的抑制作用鉴定的40种化合物b 联蛋白途径报道分子活性,KY1220被选定为能够有效地降低两者的化合物b 连环蛋白和Ras没有表现出细胞毒性。KY1220有效抑制活化的Wnt / b 对CRC细胞的转化(APC)和K-Ras突变引起的β-联蛋白和Ras / ERK通路。通过与生物技术与药理学系的Gyoonhee Han教授的合作,获得了数百种衍生物,获得了KYA1797K功能改进的化合物保留药物。KYA1797K有效抑制活化的Wnt /β-连环蛋白和Ras / ERK途径的CRC细胞的生长。确定了轴突的RGS结构域为KYA1797K的靶标,并通过与生物化学系的Weontae Lee教授的合作确定了RGS-axin-KYA1797K的分子结构。他们进一步表明,KYA1797K通过调节b -catenin破坏复合物激活GSK3β 。活化的GSK3β 通过募集b- TrCP E3接头蛋白,诱导b -catenin和Ras的磷酸化,这是多聚泛素依赖性蛋白酶体降解所必需的。KYA1797K在移植有携带APC和K-Ras突变的CRC细胞的异种移植小鼠中有效抑制CRC的生长。通过使用携带APC和K-Ras的遗传工程化Apc min / + / Kras G12D LA2小鼠进一步显示KYA1797K的有效性突变。他们的 研究结果发表2016年6月14日在自然-化学生物学(1个网络版第一 作者;溥海翁·查)。该文章的标题是“小分子结合的轴突RGS结构域促进β-连环蛋白和Ras降解”。本研究表明,通过靶向轴突的β-连环蛋白和Ras两者的建立是治疗CRC的潜在治疗策略和其他类型的癌症激活Wnt /β-连环蛋白和Ras途径。

  TEAD Inhibition by p38 MAPK Reveals a Novel Tumor-suppressive Signaling Mechanism

  This interesting study published in July 2017 in Nature Cell Biology identifying a novel tumor-suppressive cellular signaling mechanism has been conducted in collaboration between laboratories of Professor Hyun Woo Park (Yonsei University, Department of Biochemistry) and Kun-Liang Guan (UCSD, USA).Title: Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation。The Hippo pathway has gained tremendous interest over the last decade because of its ability to control organ size and tissue homeostasis, and deregulation of this pathway leads to cancer. Inactivation of core Hippo pathway kinases leads to the activation of the major functional transducer YAP and its paralog TAZ. YAP/TAZ is an oncogenic transcription coactivator that regulates gene expression, primarily via interaction with the TEAD family of transcription factors. The current paradigm for the regulation of this pathway centers on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-kB, NFAT, and STAT, the regulation of nucleocytoplasmic shuttling of TEAD has been largely overlooked. In the present study, Professor Park identified, for the first time, that environmental stress promotes cytoplasmic translocation of TEAD via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Data reveal a novel mechanism underlying nucleocytoplasmic shuttling of TEAD and show that localization of TEAD is a critical determinant of the Hippo signaling output. Professor Park’s group is currently focusing on screening chemical compounds to identify TEAD inhibitors for developing an effective anticancer drug.

  研究成果四:p38 MAPK的TEAD抑制揭示了一种新型肿瘤抑制信号机制

  Hyun Woo Park教授的研究团队,这项有趣的研究发表于2017年7月,在“自然细胞生物学”(Nature Cell Biology)发现,鉴定了一种新型的肿瘤抑制性细胞信号传导机制,由Hyun Woo Park教授(延世大学生物化学系)和Kun-Liang Guan(美国UCSD)实验室, 。标题:通过p38 MAPK诱导的细胞质移位调节河马途径转录因子TEAD。河马途径在过去十年中获得了巨大的兴趣,因为它具有控制器官大小和组织稳态的能力,并且这种途径的放松导致癌症。核心河马途径激酶的失活导致主要功能转换器YAP及其旁系同源物TAZ的激活。YAP / TAZ是一种致癌转录共激活因子,主要通过与TEAD转录因子家族的相互作用来调节基因表达。目前用于调节该途径的范例主要依赖于通过上游组分的复杂网络的YAP / TAZ的磷酸化依赖性核细胞穿梭。然而,与其他转录因子(如SMAD,NF-kB,NFAT和STAT)不同,TEAD的核细胞穿梭调控基本被忽视。在目前的研究中,Park教授首次认识到环境胁迫通过p38 MAPK以河马独立的方式促进TEAD的细胞质移位。重要的是,应激诱导的TEAD抑制占优势YAP激活信号,并选择性抑制YAP驱动的癌细胞生长。数据揭示了TEAD的核细胞穿梭的新机制,并表明TEAD的定位是Hippo信号输出的关键决定因素。Park教授小组目前正在研究化学化合物,以鉴定TEAD抑制剂以开发有效的抗癌药物。应激诱导的TEAD抑制占优势YAP激活信号,并选择性抑制YAP驱动的癌细胞生长。数据揭示了TEAD的核细胞穿梭的新机制,并表明TEAD的定位是Hippo信号输出的关键决定因素。Park教授小组目前正在研究化学化合物,以鉴定TEAD抑制剂以开发有效的抗癌药物。应激诱导的TEAD抑制占优势YAP激活信号,并选择性抑制YAP驱动的癌细胞生长。数据揭示了TEAD的核细胞穿梭的新机制,并表明TEAD的定位是Hippo信号输出的关键决定因素。Park教授小组目前正在研究化学化合物,以鉴定TEAD抑制剂以开发有效的抗癌药物。

  3.设施完备的研究中心

  University Research Institutes:Center for Structural Health Care Technology in Buildings,Center for Structural Health Care Technology in BuildingsCenter for the Innovation of Engineering Education,Center for the Innovation of Engineering EducationInstitute of State Governance.Institute of State GovernanceInstitute of Korean Studies,Institute of Korean StudiesCenter for Green Solar InkYonsei Institute of Convergence Technology,Yonsei Institute of Convergence TechnologyGreen Infrastructure Technology for Climate Change,Green Infrastructure Technology for Climate ChangeSSK Research Center for Climate Change and International LawCenter for Nanomedicine,Center for NanomedicineGlycosylation Network Research CenterInstitute of East and West Studies,Institute of East and West StudiesCenter for Nano-WearResearch Institute of Future City and SocietyCenter for Advanced Research in Integrated Future Society,Center for Advanced Research in Integrated Future SocietyInstitute of Convergence Science,Institute of Convergence ScienceVan der Waals Materials Research CenterInstitute of Disaster Resilient and SafetyInstitute of Legal Research,Institute of Legal ResearchCenter for strain engineered electronic devicesInstitute for Welfare State ResearchInstitute for Poverty Alleviation and International Development,Institute for Poverty Alleviation and International DevelopmentSocial Science Data Innovation CenterStudies of biofunctional organic moleculesInstitute for Life Science and Biotechnology,Institute for Life Science and BiotechnologyCell Death Research CenterInstitute of Human Complexity and System ScienceInstitute of Language and Information Studies,Institute of Language and Information StudiesCenter for Integrative Drug DiscoveryCenter for Mathematical Analysis and Computation,Center for Mathematical Analysis and ComputationInstitute of HumanitiesInstitute of HumanitiesInstitute for Natural Sciences,Institute for Natural SciencesCenter for Noncrystalline MaterialsInstitute for SinologyIndustry Cooperation CenterInstitute for Global SustainabilityNext-Generation Converged Energy Materials Research CenterCenter for computational studies of advanced electronic material propertiesCenter for Optically-assisted Ultrahigh-precision Mechanical SystemsCenter for Sustainable BuildingsInstitute for Korean Unification Studies,Institute for Korean Unification StudiesActive Polymer Center for Pattern IntegrationYonsei Proteome Research Center,Yonsei Proteome Research CenterFrontier LabAerospace Strategy & Technical Institute,Aerospace Strategy & Technical InstituteU-City Convergence Service R&D GroupUniversity·Graduate School Research Institutes.

  Business Research Institute:Business Research InstituteEconomic Research InstituteInstitute of Engineering ResearchResearch Institute for Liberal EducationCenter for International StudiesInstitute of Basic Sciences,Institute of Basic SciencesSocial Science Research Institute,Social Science Research InstituteInstitute for Social Development StudiesCenter for Social Welfare Research,Center for Social Welfare ResearchInstitute of Symbiotic Life Technology,Institute of Symbiotic Life TechnologyEco & Culture Design Institute,Eco & Culture Design InstituteFrontier Research Institute of Convergence Sports ScienceMusic Research Institute,Music Research InstituteResearch Institute for Human BehaviorInstitute for Communications ResearchInstitute of Statistical ScienceInstitute of Christianity and Korean CultureInstitute for Modern Korean Studies,Institute for Modern Korean StudiesInstitute of Environmental Science and TechnologyInformation Technology Research Center,Information Technology Research CenterIntercollegiate Research Insitutes,Institute of Human IdentificationInstitute of Public Affairs,Institute of Public AffairsInstitute for Educational Research,Institute for Educational ResearchInstitute for the Study of Korean Modernity,Institute for the Study of Korean ModernityNano Science and Technology Research Institute,Nano Science and Technology Research InstituteInstitute of Media Art,Institute of Media ArtCenter for Cognitive ScienceInstitute of Gender Studiese-Business Research Center.

  研究中心:大学研究所、建筑结构保健技术中心、建筑结构保健技术中心工程教育创新中心、工程教育创新中心国家治理研究所、国家治理研究所韩国研究所、韩国研究所绿色太阳能油墨中心延世大学融合技术研究所、延世大学融合技术研究所绿色气候变化基础设施技术、绿色气候变化基础设施技术SSK气候变化与国际法研究中心纳米医学中心、纳米医学中心糖基化网络研究中心东西研究所、东西研究所纳米磨损中心未来城市与社会研究所综合未来社会高级研究中心、综合未来社会高级研究中心融合科学研究所、融合科学研究所范德华力材料研究中心灾害恢复与安全研究所法律研究所、法律研究所应变工程电子设备中心福利国家研究所扶贫与国际发展研究所、扶贫与国际发展研究所社会科学数据创新中心生物功能有机分子研究生命科学与生物技术研究所、生命科学与生物技术研究所细胞死亡研究中心人类复杂与系统科学研究所语言与信息研究所、语言与信息研究所综合药物发现中心数学分析与计算中心、数学分析与计算中心人文学院、人文学院自然科学研究所、自然科学研究所非晶材料中心汉学研究所产业合作中心全球可持续发展研究所下一代融合能源材料研究中心先进电子材料性能计算研究中心光学辅助超高精度机械系统中心可持续建筑中心韩国统一研究所韩国统一研究所活性聚合物中心模式集成延世大学蛋白质组学研究中心、延世大学蛋白质组学研究中心前沿实验室航空航天战略与技术研究所、航空航天战略与技术研究所U城市融合服务研发集团大学·研究生院研究所。

  商业研究所:商业研究所经济研究所工程研究所自由教育研究所国际研究中心基础科学研究所、基础科学研究所社会科学研究所、社会科学研究所社会发展研究所社会福利研究中心、社会福利研究中心共生生物技术研究所、共生生物技术研究所生态文化设计院、生态文化设计院融合体育科学前沿研究所音乐研究所、音乐研究所人类行为研究所交通研究所统计科学研究所基督教与韩国文化研究所现代韩国研究所、现代韩国研究所环境科学与技术研究所信息技术研究中心、信息技术研究中心校际研究机构、人类识别研究所公共事务研究所、公共事务研究所教育研究所、教育研究所韩国现代性研究所、韩国现代性研究所纳米科技研究院、纳米科技研究院媒体艺术学院、媒体艺术学院认知科学中心性别研究所电子商务研究中心。

  四、校园环境(源自网络)

  新村校区:延世大学新村校区坐落于首尔特别市西大门区,占地99万多平方米。延世大学主馆新村校区的中央图书馆,三星学术信息馆,商经-经营学院图书馆,音乐图书室,面积达5万4千多平方米,设有6300阅览席,藏书187万余册。校园内的互联网络十分发达,有线网络接口覆盖了校园新旧建筑。于2003年搭建的无线网络覆盖全校,在学校任何时间,任何地点都可以连接到互联网。

  松岛国际校区:位于仁川广域市松岛自由贸易区建成的松岛国际校区,占地约61万多平方米,致力于成为世界级的教育研究机构。松岛国际校区将作为国际化的学习空间,使世界各国学生在一起共同学习,成为东亚地区的教育基地,并将发挥多种重要作用。校区建立了交互式多媒体教学系统、批量控制管理系统等高科技IT基础设施和普及的无线网络教室,在空间和功能上提供了一个方便的教育环境。

  原州校区:原州校区位于韩国江原道原州市,距离首尔约一个小时车程。原州市风景秀丽,环境优雅,所以此校区又被称为大自然中的校园。院系专业设有人文艺术学院、科学技术学院、政经学院、保健科学学院、原州医科学院 等。

  五、杰出校友(源自网络)

  1.商界

  金宇中(大宇集团创始人、前CEO)

  具本茂(LG集团CEO)

  朴三求(锦湖韩亚集团CEO)

  徐庆培(爱茉莉太平洋集团主席)

  方相勋(朝鲜日报前社长)

  崔道锡(三星电子CEO)

  朴志远(斗山重工CEO)

  郑梦宪(现代集团前CEO)

  金圣朱(SUNGJOO集团董事长)

  张元基(三星集团大中华区总裁)

  2.政界

  韩升洙(第56届联合国大会主席、韩国前总理、联合国气候变化问题特使)

  金学洙(联合国副秘书长)

  李满燮(韩国国会议长)

  金宇植(韩国前总理)

  尹 观(韩国最高法院院长)

  金硕洙(韩国前总理)

  3.体育界

  李章洙(中国足球超级联赛北京国安、广州恒大足球俱乐部前任主教练)

  许丁茂(著名足球运动员、韩国国家足球队主教练)

  金民友(韩国足球运动员)

  高基玄(韩国短道速滑运动员)

  成始柏(韩国短道速滑运动员)

  郭润起(韩国短道速滑运动员)

  李顺喆(韩国棒球运动员)

  金庚泰(职业高尔夫运动员)孙妍在(韩国艺术体操运动员)

  4.科技界

  李永旭(84届天文系 现任延世大学天文宇宙学系教授 2002年被世界经济论坛评选为“亚洲新一代领导人”)

  申在元(82届机械系 现任美国NASA副局长“东方人在NASA被委任如此高职位的第一人”)

  5.文化界

  韩振熙(演员)

  禹贤(演员)

  李泰渊(演员)

  奉俊昊(电影导演)

  安在旭(演员、歌手)

  朴振荣(JYP Entertainment创始人、CEO)

  韩在石(演员)

  朴真熙(演员)

  全炫茂(艺人、主持人)

  以上内容由出国留学网www.liuxue86.com独家翻译,版权归出国留学网所有,未经出国留学网授权许可,任何公司任何人不得转载,违者必追究法律责任!

  推荐阅读:

  留学归来真的好就业吗?

  高考成绩不理想,出国留学现实吗?

  最受中国留学生亲睐的目的国和专业是什么


  想了解更多教育体系网的资讯,请访问: 教育体系

本文来源:https://www.liuxue86.com/a/3402933.html
延伸阅读
相信大多数决定去奥本大学留学的小伙伴都有考虑过——奥本大学有什么优势。今天,出国留学网就为大家详细讲解奥本大学的优势,感兴趣的小伙伴一起来了解一下吧!奥本大学学校优势1.奥本大学拥
2020-07-21
加拿大一直以来都是一个留学大国,最近几年,艺术类的大学在加拿大越来越热门,那么加拿大都有哪些艺术大学呢?出国留学网整理了这八所大学来看看吧!1、拉萨尔学院建校于1959年,总部位于
2020-07-21
韩国是留学热门目的地之一,每年都有许多小伙伴选择去韩国留学。今天,出国留学网为大家详细介绍韩国有哪些好的国际大学,感兴趣的小伙伴一起来看看吧!首尔国立大学首尔国立大学概况首尔国立大
2020-07-21
每年都有许多小伙伴去国外留学,其中不乏一些小伙伴的梦想是成为一名宇航员。那么哪些国际大学培养的宇航员多呢?出国留学网这就为大家详细讲解,希望能够帮助到大家。从军事学院到国立大学,许
2020-07-21
俄罗斯的高等教育,和国内是有着比较大的差异的,搞清楚差异才能更快适应。跟着出国留学网一起来了解一下俄罗斯留学特色盘点中俄留学有什么不一样?一、入学门槛相较于国内985/211类名校
2020-07-21
作为韩国的一流大学,延世大学拥有非常强的教学实力,而且还享受政府的资助。下面和出国留学网一起看看延世大学详细介绍怎样申请韩国一流名校?一、院校简介它是一所在宗教精神的主导下建立的大
2019-07-06
韩国的语学堂是很多想去韩国留学但没有达到语言要求的或是没有语言基础的学生的最好选择。延世大学也开有语学堂,下面和出国留学网一起去来了解一下该大学的语学堂吧!一、延世大学语学堂简介延
2020-05-07
其实要成功的申到自己想去读的学校,抓好时间也是很重要的,就算是不实行先申先得的机制的,申的时机好的话,也是能加大被录上的比率的。那么延世大学的研究生什么时候申呢?和出国留学网来看一
2020-04-02
长期以来,梨花女子大学作为韩国女性教育传统与精神的象征,以培养亚洲女性精英而享誉世界,被誉为“亚洲第一名门女校”。下面和和出国留学网一起来看看这所学校吧。一、学校简介梨花女子大学(
2020-06-04
一直以来,加拿大以其高度发达的经济,高素质的文明、高质量的教育、高福利社会保障体系吸引着来自世界各地的莘莘学子前往留学,下面是出国留学网整理的加拿大留学概况,一起来看看吧。一、加拿
2020-06-04